Subscribe Become an Author Sign Up Log In

Machine Learning


[Interview] Demystifying the Role of Artificial Intelligence in The Life Sciences

   by Andrii Buvailo    234
[Interview]  Demystifying the Role of Artificial Intelligence in The Life Sciences

In this interview, Rasim Shah, Director at OKRA Technologies provided a glimpse into how the company applies state of the art machine learning technologies to solve real world challanges in the life sciences. Rasim also agreed to answer several questions about a more general context of AI in pharma, its current challanges and future perspective, as well as describe the current efforts the European Union puts into supporting the AI ecosystem in the region.

 

Rasim Shah, Director at OKRA Technologies:

OKRA Technologies is a leading European artificial intelligence (AI) company for life sciences. Our goal is to empower life science executives at their desks or whilst on the move, with explainable AI outputs. OKRA’s solutions deliver suggestions, predictions and explanations to enable life sciences executives and operational teams to drive the right drug to the right patient with humanised and understandable AI outputs. The OKRA engine learns from real-world data, structured, unstructured, clinical, commercial and scientific literature to drive the right insight to the different teams in life sciences. Our deep expertise in AI, combined with in-depth medical and product knowledge from life science leaders, has allowed us to develop and co-create products that can transform the way life sciences approach traditional industry challenges. We focus on operationalising AI in an ethical way by placing users of these systems at the centre.

[Interview] This Vancouver-based Startup Plans To Boost Drug Design With AI

   by Andrii Buvailo    634
[Interview] This Vancouver-based Startup Plans To Boost Drug Design With AI

Variational AI is a newly formed artificial intelligence (AI)-driven molecule discovery & drug design startup out of Vancouver, British Columbia, Canada. The company has developed Enki, an AI-powered small molecule discovery service. 

The founders of Variational AI are planning to build on top of their state-of-the-art expertise in machine learning, reflected in more than 40 research publications, including those presented at NIPS/NeurIPS, ICML, ICLR, CVPR, ICCV, and other top events in the area of artificial intelligence research.

Introducing Sysrev: The Intelligent Platform For Document Review And Automated Data Extraction

   by Thomas Luechtefeld    612
Introducing Sysrev: The Intelligent Platform For Document Review And Automated Data Extraction

In today’s technological world, data is perhaps the single most important driver of a business’ success. Access to relevant data allows businesses to make a variety of informed decisions. Unfortunately, acquiring this data can be quite cumbersome as employees spend countless hours manually reviewing documents. This is especially true for more complex reviews such as journal publications, patient records, or technical specifications. Sysrev offers enterprise a platform for managing collaborative document reviews, injecting machine learning into the review process to increase accuracy and efficiency. Depending on the data source and task, Sysrev can even automate data extraction.

Sysrev, launched in June 2019, is an intelligent platform for document reviews and automated data extraction. Sysrev optimizes the review process with machine learning and adds efficiency through its intuitive, and collaborative, interface.

[Interview] The Rise of Quantum Physics in Drug Discovery

   by Andrii Buvailo    1196
[Interview] The Rise of Quantum Physics in Drug Discovery

Computer-aided drug design (CADD) is a central part of so-called “rational drug design”, pioneered in the last century by companies like Vertex. Over the last decades, CADD had great influence on the way new therapeutics are discovered, however, it also showed limitations due to modest accuracy of computational tools.  

The majority of software tools used for computational chemistry and biology rely on molecular mechanics -- a simplified representation of molecules, essentially reducing them down to “balls and sticks”: atoms and bonds between them. In this way it is easier to compute, but accuracy suffers greatly.

In order to gain adequate accuracy, one has to account for the electronic behavior of atoms and molecules, i.e. consider subatomic particles -- electrons and protons. This is what quantum mechanical (QM) methods are all about -- and the theory is not new, dating back to the early decades of the 20th century.  

Chemchart Enterprise: an Intelligent Platform for Chemical Data Management

   by TJ Bozada    510
Chemchart Enterprise: an Intelligent Platform for Chemical Data Management

Chemical data management is an important process to a number of industries, especially those engaged in manufacturing or research and development.  Unfortunately, chemical data is as unwieldy to manage as it is important.  This is for a variety of reasons, but the biggest contributing factor is the sheer amount of data available to the public and managed by an enterprise.  For decades, chemical data has been recorded in paper, and then excel sheets, and now databases.  While efforts have been made to homogenize, or at least centralize this data, there is not one single solution for indexing and searching the wide variety of data types, and sources, managed by an individual enterprise.  Chemchart Enterprise changes this paradigm by combining the flexibility of big data with the precision of machine learning, providing a single solution for managing the entire organization chemical space.