BiopharmaTrend.com

A fresh viewpoint on drug discovery, pharma, and biotech

Become an author | Log in

Topic: ‘Interviews’


[Interview] Adoption of AI-driven Tools By The Life Sciences Professionals: What Is Coming In 2018?

   by Andrii Buvailo    281
[Interview] Adoption of AI-driven Tools By The Life Sciences Professionals: What Is Coming In 2018?

The previous year was rich in discussions and events one way or another related to potential applications of artificial intelligence (AI) advances for the benefit of drug discovery and development.

(Note: For the sake of simplicity, the term “AI” will be applied herein interchangeably with terms like “machine learning” (ML), “deep learning” (DL), “neural networks” (NN) etc., although conceptually, those terms are quite different in meaning. The term AI describes a field of computer science studying how to make a computer intelligent at doing something, while terms like ”machine learning”, “deep learning”, and “neural networks” relate to algorithms and methods by which it can be achieved.).

[Interview] The Current Status Of AI In Drug Discovery And Looking Forward Into 2018

   by Andrii Buvailo    1276
[Interview] The Current Status Of AI In Drug Discovery And Looking Forward Into 2018

Without a doubt, the area of artificial intelligence (AI) has been a sensation lately -- judging by the amount of hype around this topic. But the hype is not a guarantee of a real breakthrough, which is defined by facts and measurable achievements, not just loud statements.

The fact is, however, AI-driven systems managed to learn chess at a champion level in just 4 hours, and beat human champions in Jeopardy, and Go -- we all know that. And Facebook can recognize faces in a blurry photo where you are hanging out with a bunch of friends -- not worse than you (human) can do. You can try and see it for yourself anytime -- it works!

If it is not enough, here is a list of pretty much everything AI can do already today, speaking in practical terms. With this, it is becoming obvious that the progress in the AI space is quite real and the practical benefits are quite tangible, albeit there are a lot of technological and organizational challenges to overcome yet.

What is important to realize, though, is that the AI technologies hold a substantial disruptive potential, which can (possibly) transform the whole industries and redefine status quo. It is something to keep in mind if we talk about maintaining a long-term innovative competitiveness.