Subscribe Become an Author Log In

Covering emerging technologies, innovations, and companies

White Papers And Industry Reports

Trends, opportunities and the future of drug discovery

Genenerative AI Models In Small Molecule Drug Discovery: The Open Challenge To Create A Unified Benchmark

   by Mostapha Benhenda    2754

Generative AI models in chemistry are increasingly popular in the research community, mainly, due to their interest for drug discovery applications. They generate virtual molecules with desired chemical and biological properties (more details in this blog post).

However, this flourishing literature still lacks a unified benchmark. Such benchmark would provide a common framework to evaluate and compare different generative models. Moreover, it would help to formulate best practices for this emerging industry of ‘AI molecule generators’: how much training data is needed, for how long the model should be trained, and so on.

3 Ways Big Data and Machine Learning Revolutionize Drug Discovery

   by Andrii Buvailo    9120

The Internet media is trending now with numerous mentions of “big data”, “machine learning” and “artificial intelligence” all together destined to revolutionize pharmaceutical and biotech industries and the way drugs are discovered. These new technologies are believed to make drug discovery cheaper, faster, and more productive.

But how is “magic” supposed to happen, after all?

The Time for Breakthroughs in Antibiotics: 10 Biotech Startups Fighting Bacterial Resistance

   by Andrii Buvailo    4578

Since a revolutionary discovery of penicillin in 1928 by Scottish bacteriologist and Nobel laureate Alexander Fleming, numerous inventions of new antibiotic classes followed which brought medicine to a new level allowing to provide humans with unprecedented protection against deadly infections, used to kill millions of people in the previous centuries.

Cross-Coupling Hits The Big Time Again

   by Andrii Buvailo    3601

Recently, a series of papers emerged in scientific press significantly expanding capabilities of classical carbon-heteroatom cross-coupling reactions making them simpler, cheaper, and efficient across a much broader range of substrates.

Cross-coupling reactions are widely used by medicinal chemists since they offer a suitable way of creating new carbon-carbon, carbon-oxygen, carbon-sulfur and carbon-nitrogen bonds, which are the staple of modern drug development. Despite tremendous progress in optimizing C-C bond-forming reactions (most notably, Negishi, Suzuki–Miyaura, Stille, Kumada and Hiyama couplings), the use of carbon-heteroatom couplings was rather limited in practice. Fortunately, a major progress has been made recently in this direction.