BioPharmaTrend
Latest News
All Topics
  • Artificial Intelligence
  • NeuroTech
  • Premium Content
  • Knowledge Center
Interviews
Companies
  • Company Directory
  • Sponsored Case Studies
  • Create Company Profile
More
  • About Us
  • Our Team
  • Advisory Board
  • Citations and Press Coverage
  • Partner Events Calendar
  • Advertise with Us
  • Write for Us
Subscribe
Login/Join

  Artificial Intelligence

The Growing Momentum for AI Foundation Models in Biotech and 12 Notable Companies

by Andrii Buvailo, PhD  (contributor )   •   March 17, 2024  

Disclaimer: All opinions expressed by Contributors are their own and do not represent those of their employers, or BiopharmaTrend.com.
Contributors are fully responsible for assuring they own any required copyright for any content they submit to BiopharmaTrend.com. This website and its owners shall not be liable for neither information and content submitted for publication by Contributors, nor its accuracy.

# AI & Digital   
Share:   Share in LinkedIn  Share in Bluesky  Share in Reddit  Share in Hacker News  Share in X  Share in Facebook  Send by email

As artificial intelligence (AI) foundation models grow increasingly capable, they become useful for applications across a wide range of economic functions and industries, including biotech.

The most prominent examples of general purpose foundation models are the GPT-3 and GPT-4 models, which form the basis of ChatGPT, and BERT, or Bidirectional Encoder Representations from Transformers.

These are gigantic models trained on enormous volumes of data, often in a self-supervised or unsupervised manner (without the need for labeled data). 

Thanks to special model design, including transformer architecture and attention algorithms, foundation models are inherently generalizable, allowing their adaptation to a diverse array of downstream tasks, unlike traditional AI models that excel in single tasks like, say, predicting molecule-target interaction.

The "foundation" aspect comes from their generalizability: once pre-trained, they can be fine-tuned with smaller, domain-specific datasets to excel in specific tasks, reducing the need for training new models from scratch. This approach enables them to serve as a versatile base for a multitude of applications, from natural language processing to bioinformatics, by adapting to the nuances of particular challenges through additional training.

#advertisement
How BenchSci’s ASCEND Builds a Map for Biomedical Reasoning

Continue reading

This content available exclusively for BPT Mebmers

 BPT Membership 

Topics: AI & Digital   

Share:   Share in LinkedIn  Share in Bluesky  Share in Reddit  Share in Hacker News  Share in X  Share in Facebook  Send by email
#advertisement
ThermoFisher Scientific: Integrated genetic technologies for cell therapy development
#advertisement
Webinar: AI in Clinical Trials

BiopharmaTrend.com

Where Tech Meets Bio
mail  Newsletter
in  LinkedIn
x  X
gnews  Google News
rss  RSS Feed

About


  • What we do
  • Citations and Press Coverage
  • Terms of Use
  • Privacy Policy
  • Disclaimer

We Offer


  • Premium Content
  • BioTech Scout
  • Interviews
  • Partner Events
  • Case Studies

Opportunities


  • Membership
  • Advertise
  • Submit Company
  • Write for Us
  • Contact Us

© BPT Analytics LTD 2025
We use cookies to personalise content and to analyse our traffic. You consent to our cookies if you continue to use our website. Read more details in our cookies policy.