BioPharmaTrend
Latest News
All Topics
  • Artificial Intelligence
  • NeuroTech
  • Premium Content
  • Knowledge Center
Interviews
Companies
  • Company Directory
  • Sponsored Case Studies
  • Create Company Profile
More
  • About Us
  • Our Team
  • Advisory Board
  • Citations and Press Coverage
  • Partner Events Calendar
  • Advertise with Us
  • Write for Us
Subscribe
Login/Join

Learning From Nature: New Antibiotics Found In Our Body

by Andrii Buvailo, PhD  (contributor )   •   Oct. 25, 2016  

Disclaimer: All opinions expressed by Contributors are their own and do not represent those of their employers, or BiopharmaTrend.com.
Contributors are fully responsible for assuring they own any required copyright for any content they submit to BiopharmaTrend.com. This website and its owners shall not be liable for neither information and content submitted for publication by Contributors, nor its accuracy.

   Biopharma insight    # Novel Therapeutics   
Share:   Share in LinkedIn  Share in Bluesky  Share in Reddit  Share in Hacker News  Share in X  Share in Facebook  Send by email

To date, nature has been the best teacher for drug discovery scientists, especially for those who develop antimicrobial drugs. Lately, a new example proving this notion emerged in press - a recent publication in a prestigious research journal Nature describing a new powerful method of identifying yet unknown classes of antibiotics by learning from bacteria living in our body - microbiota.

#advertisement
AI in Drug Discovery Report 2025

It is known that all bacteria produce, among other things, small molecule chemicals, metabolites, as products of their living. Those products range in properties and biological activity, for example, some of them appear to be powerful antibiotics helping bacteria protect themselves from other microbes. The characterization of such products is a powerful tool, if not the most successful one, for identifying new small-molecule therapeutics. This is how we learn from nature.

In a typical experimental flow using this approach, scientists have to culture bacteria in labs and analyze metabolites to identify novel bioactive compounds. The limitation, however, arises from our inability to culture a majority of bacteria in the laboratory and from the fact that most biosynthetic gene clusters are not active under laboratory conditions, meaning they do not produce compounds they would do in a natural environment.

On the other hand, extensive sequencing of bacterial genomes and metagenomes has shown that the natural potential of the bacterial biosynthetic diversity is huge, compared to that small fraction that we can access in a lab.

Continue reading

This content available exclusively for BPT Mebmers

 BPT Membership 

Topics: Novel Therapeutics   

Share:   Share in LinkedIn  Share in Bluesky  Share in Reddit  Share in Hacker News  Share in X  Share in Facebook  Send by email

You may also be interested to read:

Artificial Intelligence Empowers Drug Discovery: New AI-startups Focus On Biotech
by Andrii Buvailo

 

#advertisement
ThermoFisher Scientific: Integrated genetic technologies for cell therapy development
#advertisement
Webinar: AI in Clinical Trials

BiopharmaTrend.com

Where Tech Meets Bio
mail  Newsletter
in  LinkedIn
x  X
gnews  Google News
rss  RSS Feed

About


  • What we do
  • Citations and Press Coverage
  • Terms of Use
  • Privacy Policy
  • Disclaimer

We Offer


  • Premium Content
  • BioTech Scout
  • Interviews
  • Partner Events
  • Case Studies

Opportunities


  • Membership
  • Advertise
  • Submit Company
  • Write for Us
  • Contact Us

© BPT Analytics LTD 2025
We use cookies to personalise content and to analyse our traffic. You consent to our cookies if you continue to use our website. Read more details in our cookies policy.